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As video image generating, processing and synthesizing systems become increasingly
sophisticated, the problem of achieving maximum control over these systems must
be addressed. This is particularly relevant to situations in which videomakers
work independently and frequently as individuals in the creation of their works.
Many video systems provide such a large number of image making variables that
manual adjustments within the parameters of each control necessary to obtain
desired structures and sequences is not always possible. The artist must then
compromise the image to the system. Video synthesizer systems offer an enormous
potential for intricate image constructions, but without appropriate control
systems the individual artist may not be able to take full advantage of the
system to achieve with accuracy the structures desired. Microprocessor systems,
it was believed, could provide the necessary control for precision of image
structuring if these computer systems could be completely dedicated to the
processes of visual art making and be made usable by artists in direct ways.

The primary aim of the Computer-Based Video Synthesizer project was the re-
search and development of such systems with capacity for direct use by artists
in the production of independent works. A major design consideration in both
hardware and software development concerned the establishment of a holistic
system directly related to the requirements of individuals working in the
electronic arts and usable by them in their personal work. It was considered
important to reduce, as much as possible, the reliance by artists on outside
technical support in the production processes because of the difficulties of
communication and interpretation and the intimacy of the creative situation.
The initial planning for this project began in 1975 with conferences at the
Experimental Television Center involving Mr. Ralph Hocking, Mr. Walter Wright,
Dr. Donald McArthur and Mr. Richard Brewster of Binghamton, New York and
Steina and Woody Vasulka of Buffalo, New York. With support from the National
Endowment for the Arts and the New York State Council on the Arts, the project
was completed in the Fall of 1977; the resulting system is now operational at
the Experimental Television Center and is available for use by artists through
the production program at the Center.

An important philosophical consideration throughout the project concerned a
humanistic approach to the design and utilization of computer and video systems
technologies; one of the initial stages of this project involved the development
of methodologies which would guide the construction of complex tools and systems
dedicated to the needs of visual artists. To achieve this end, it was essential
that artists, programmers and engineers work together in all aspects of the pro-
ject, each group communicating from its own unique perspective. Artists helped
to articulate and define the types of controls which they felt were important

in image making. Engineers and programmers frequently introduced image making
devices and control methods which had not previously been available; the
structural and compositional potentials of these components were completely
unexplored. In the design and construction of the hardware there were a number
of specific objectives. A flexible and versatile system was important in order
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to provide artists with as many options as possible for image generation, pro-
cessing and control. The present system is modular in design and permits the
inclusion or exclusion of discrete components in the assembly of a system
specifically tailored to meet the individual requirements of a particular artist
or project. Modular and standardized design also allows for the future research
and development of new components and the modification of existing hardware and
software all of which can be incorporated into the present system with a minimum
of effort. The system is capable of interfacing with many video and computer com-
ponents an increasing number of which are owned by or accessible to individual
artists and small arts organizations. For example, the system at the Center is
compatible with the system of Steina and Woody Vasulka, and exchanges of software
and hardware are possible between Buffalo and Binghamton. Video production re-
quires a fairly powerful microprocessor system which is capable of efficiently
handling ,the large amount of information necessary in the generation and control
of image structures. The needs for a powerful system, also low in cost, had to

be weighed against the factor of complexity since the system was to be used by
individual artists the majority of whom had little or no prior experience with
computer hardware or software. The 16 bit system as it was designed and con-
structed met the criteria of low cost, high power and ease of operation. The
hardware made use of commercially available components as much as possible in

the interests of efficiency of operation and construction and ease of duplication
of the system by artists and arts groups. Many specific components and interfaces,
however, had to be designed and constructed specifically for this project since
they were either not available commercially or were too costly; many of the com-
mercial components which were available did not meet the specific requirements
determined by the nature of the application of the system.

The software development for this project also emphasized a humanistic approach

to the use of microprocessor and video systems by artists. The goal of the soft-
ware research was the development of an interactive language usable by artists.
This language had to be understandable to artists so that they could address the
computer directly, using language and concepts derived from the visual arts, with-
out the necessity of translation into high level computer languages. The language
had to be responsive to the needs of artists, enabling them to manipulate discrete
elements of design and compositional structures. Further, it had to allow the
artist to intervene at any point in the construction of the composition so details
of compositional configurations as well as whole sequences could be easily altered.
Precision was felt to be critical; the artist had to be able to develop and score
the composition, store, run and edit it in a manner which insured its accuracy

and repeatability. It was felt that the language should also provide for the option
of programmed randomness and operate in either structured or random modes or a
predetermined combination of both modes.

The computer-based video synthesizer system which is now operational at the
Center consists of two sub-systems, the microprocessor and the video system and
their interface. The computer section consists of a 16 bit DEC LSI-11 micro-
processor, teletype and printer, dual floppy disk and 20K of memory. Components
designed and constructed specifically for this project include the parallel in-
terface, buffer memory, module to element bus, element bus, digital to analog
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converters, analog to digital converters and real time input. The video system
includes a four channel analog colorizer with keyers, a 50 point switching matrix,
spatial and intensity digitizer and a voltage control bank. The video system is
modular in design; each of these components was researched, designed and con-
structed over a period of four years under the research and development program
at the Center. Each of the video components may be combined with any other to
form a system tailored to individual requirements; the video system may be
operated manually or placed under computer control. This design consideration
allows a maximum flexibility with a limited amount of equipment, permitting

the same components to serve a variety of artists with different systems needs
and experiences. Hardware design also permits manual interruption of computer
processes at any point through the use of analog to digital converters and real
time input. This feature allows the artist more complete control over all elements
of the image and its temporal structures. Changes in composition may occur by
software reprogramming or direct manual interactions by the artist or a com-
bination of these techniques.

A more detailed description of the hardware aspect of this project is presented
in the papers by Dr. Donald McArthur. Section I A provides an orientation to the
system architecture. Section I B is a paper written from a transcript of a pre-
sentation by McArthur in Buffalo, New York in March 1977 for the 'Design/
Electronic Arts' conference supported by the National Endowment for the Arts and
the New York State Council on the Arts and sponsored by Media Study/Buffalo and
the Center for Media Study, State University of New York at Buffalo. This pre-
sentation by McArthur was based directly on the research McArthur had done for
the Computer-Based Video Synthesizer project.

The aim of the software aspect of the project was the development of an inter-
active language which uses concepts and vocabulary derived from the visual arts.
It was anticipated that this approach would make the computer based video system
accessible to a much larger number of artists than would a system which depends
on the presence of a programmer to interpret the ideas and images of an artist
into a computer language. Before any except the most rudimentary of programming
could be developed, analysis of the fundamental elements in the composition of
single images as well as their temporal structures had to be conducted, Identi-
fication and definition of these elements and the parameters of change within
each variable were the initial steps. Within single images, discounting the
time function, elements which were chosen included color.field variables such
as hue, saturation, chroma and intensity, form and shape variables including
type of shape, position and frequency, texture and density. Each element has
parameters of change which involve the temporal aspects of video. The methods
of change involve problems of duration and sequencing with references to
rhythmic structures.

As is noted in the papers by Wright, the software research is still in its initial
stages and further explorations are necessary before the interactive language is
fully functional. Several programs have been developed, one of which is analyzed
in Wright's paper, section II A, which represents an incomplete stage of the
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language. Section II B is a transcript of a presentation by Wright at the 'Design/
Electronic Arts' conference in Buffalo in 1977; these materials are based
directly on the research Wright had done for this project.

The computer based video synthesizer system is now operational at the Experi-
mental Television Center in Binghamton, New York and is available to artists
under the production program. As a greater number of artists utilize this
system, each artist will be encouraged to articulate ways in which the system
can be made more responsive. The results of this project have already indicated
several important avenues for continued research, among them further and con-
tinued software development and the publication and dissemination of the re-
sults of the research to date. The computer based video system can serve as

a model system; publication of research results will allow the duplication

and modification of the system by other individual artists and arts organizations.
Although the research to date has been specific to video, microprocessor systems
are useful tools in many of the visual and performing arts, and a publication of
this nature would assist many individuals from a variety of fields. A complete
set of documentation has already been prepared; the next phase of this project,
for which the Center is seeking support, includes the publication of these
materials, including detailed schematic documentation. This publication will
also include more theoretical papers, approaching the system and its applications
from the points of view of aesthetics, physics, electronics and video and micro-
processor technology. The aim of this publication is to provide specific and
detailed information to permit duplication of the system and also introduce con-
ceptual frameworks from which to view the electronic arts.
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I. Introductipn

As science advances, with the resulting advances in technology, we
have new tools and new capabilities which influence our world in many
ways. This new technology not only influences the traditional art forms
but also produges new forms of art. The development of high speed elec-
tronic componepts and circuits, the cathode ray tube, the video camera, and
inexpensive vijeo tape recorders enabled the development of video art. The
development of syall but powerful computers now allows systems to be de-
veloped which gan give the video artist a new dimension of control over the
video image. With a computer-based video synthesizer (C2VS), one can
generate a seqjence of images while controlling each indivjdual image with
detail and pregision that is many orders of marnitude greater than is
possible with manual control.

The abiligy to control the dynamics of the image is useful to the
artist only if the system is capable of generating the image in real time.
With this requirement in mind, the natural choice of devices for conver-
ting electrical sicnals to visual images is the conventional video system.
This choice algo gives the capability of recording the video compositions
with a conventional video tape recorder and of broadcasting to a large
audience through existing network systems.

There are basically two modes of operation of the system: inter-
active composipional mode and automatic production mode. In the compo-
sitional mode, the artist can enter programs and parameters through the
keyboard, observe the resulting sequence of images, and then modify para-
meters through either the keyboard or a real time input and thus build
up 3 data set for a complete pjece. At each stage of the composition
process the data set, representing all the aesthetic decisions made by
the artist, is stored in the computer. When the composition is finished
the system will operate in the automatic production mode generatine the
final video signal in real time with no intervention by the artist. The
artist may also choose to use a combination of these two modes in an
interactive performance or allow an audience to interact with the systemn
operating automatically. The system is structured so that all of these
variations can be accomodated by appropriate programming.

The system may be operated as a generatineg synthesizer which produces
a video signal entirely from internal sipnals or as a processing synthe-
sizer which utilizes sirnals of external origin such as a video camera.
Fither of these two types of operations is carried out by a conficuration
of element modules, each of which performs a class of functions, with the
specific function during one frame beiny determined by the control parameters
received from the comouter.

Since the computer functions only to generate the parameters which
rovern the behavior of the synthesizer modules, a video signal will be
cenerated without operation of the computer. The system will simply repeat
the frame unti} the parameters are changed. Thus the artist may choose
to stop the computer in which case he is able to examine a single frame,
or he may altey the program so that a given sequence is displayed very
slowly or repeated very rapidly.
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ITI. System Structure

The CBVS consists of two parts: the computer section shown in the
lower section of figure 1 and the video section shown in the upper section
of the figure. Both sections operate simultaneously and independently,
communicating through the buffer memory which has a capacity of 1,02u
16 bit words. Each of these words is either a picture element, a number
which controls some function of the video section and determines some
aspect of one field of the video image, or it is a picture feature, a
number determined by the video section and may depend on an external
sifnal such as a video camera siznal. The buffer memory is connected
to the computer bus through a 16 bit parallel interface which is struec-
tured in such a way that each word in the buffer memory is addressable
and may be read or written in exactly the same way as words in the main
computer memory. This memory-mapped I/0 system simplifies the software
which controls the buffer memory. In order to undate an element such
as a control D/A, the computer must execute an instruction which stores
the new value in the location corresponding to that element.

During the active scan time, the control computer reads features
from the buffer memory and generates elements for the followine field and
stores them in the buffer memory. During the vertical blanking interval,
information is transferred through the element bus from the buffer memory
to the element modules or from the feature modules to the buffer memory.
The designation of a particular area of the buffer memory as an element
or feature is under program control. During the transfer between the
buffer memory and the element bus, the computer is locked out of the buffer
memory. On completion of the transfer, the interface cenerates a vectored
interrupt which requests the computer to generate parameters for the next
field.

The computer system consists of: a DEC LSI-11 microprocessor which
has a 16 bit word length and an instruction execution time of about 7
microseconds; Teletype Keyboard and printer connected through a serial
interface; 20 K of dynamic memory: a dual drive floppy disk system with a
capacity of 256,256 bytes per diskette. An additional serial interface
is also available for connecting through a modem to other computer systems,
The entire system is dedicated to the synthesizer systen.

The overall timing is determined by a 9.7552434 MYz clock which is
phase locked to the subcarrier (3.579545 MHz). This frequency is chosen
to insure a coherent subcarrier and to divide the active portion of the
scan line into 512 pixels. The red, ereen, and blue sirfnals are generated
independently, and the chroma encoding is done with analoe circuits; thus
there is no advantage to following the common practice of making the pixel
rate an integer multiple of the subcarrier frequency. With this clock
frequency, a full nine bit word is used to define the horizontal position
on the active portion of the raster. Figure 2 shows the X and Y wave forms.
The X-Y module generates twenty bits of timing information (ten bits for
horizontal, including the blanking period, and ten for the line count).
This module algo generates sync, drive, burst flag and the transfer request
TR signal which controls the timing of the buffer memory.
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Timine details of the interface and buffer memory are shown in figure
3. The transfer request TR coes low at the beginning of vertical blankine
initiating an arbitration for access to the buffer memorv. If the computer
ig_ggpessinv the buffer memorv, the current bus cycle is completed, then
PEADY roes hich, and the buffer memory controller cvcles through memory
ngigg the required element and feature transfers. %hen this is completed,
READY goes low, control of the memory is returned to the computer, and an
interrupt is renerated requesting data for the following field. As in-
dicated in the diacram, durine the Nth field, the computer is ceneratinr
data for the N+lth field.

The timings of the sicnals on the element bus are indicated in fi-ure
4. During the transfer, the menory controller renerates: the addresses
Ag -A ; the clock sipnals B; » "2 , and Z., ; and the status sirnals
CME indicating a3 transfer from the memory to an element and CFM indicatinc
a transfer from a feature module to the memory. The signals ETF and FTT
are renerated by the synthesizer modules and initiate a controller Flement/
Feature mode change. The three phase clock system is used to control modules
which have the structure shown in fipure 5. Functions which use data from
the compuger during the vertical blanking interval are disabled when the
buffer memory accesses that particular element by a signal generated usinre

#, - This allows access to the buffer memory during ﬁa . The third clock,

Pa Fenerates a memory write signal.

Time delays in the dicital processing modules could produce errors
and shifts of the imape to the right. This is prevented by deskewin~ the
output of each with a latch clocked by the master clock (9.755 “iz.).
Compensation for the resulting 102.5 nSec. delay in each module is provided
by starting the X count at the beginning of the horizontal blanking interval
rather than at the end. An additional shift to the right or left is then
achieved by adding (mod 512) a constant supplied by the computer. The default
value of this constant is 404 + number of elements.

ITI. Element and Feature Modules

The structure described above supports a variety of element and feature
modules which mav be chosen and confirured according to the tastes of the
artist. Our experience indicates that a large amount of work can be produced
with a relstively small number of elements in a standard configuration. “hen-
ever possible, a new element added to the system is configured in such a way
that if the control word is get equal to zero it has no effect on the system,
Thus a minimum amount of reprogrammins is required following system expansion.

Two general classes of modules have been developed: digital and hybrid.
The hvbrid elements are: hish-speed D/A converters used for reneratins the
red, freep, and blue video signals which are converted to NTSC format in the
gtandard wav: low-speed D/A converters used for generating control voltares,
field-by-field controllable, used to operate existing voltage controlled
analog imare processinrs systems such as keyers, raster manipulaters, etc.
Another hybrid element is the analoe video switching matrix. Four bits of
one contrpl word are used to select one of sixteen inputs for one output.

Dipital processing elements include: constant; X + constant; Y + constant:
twelve-channel sixteen-line demultiplexer with output complement; and four-
channel fpour-bit by sixty-four word memory.
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I. Introduction

As science advances, with the resulting advances in technology, we
have new tools and new capabilities which influence our world in many
ways. This new technology not only influences the traditional art forms
but also produces new forms of art. The development of high speed elec-
tronic components and circuits, the cathode ray tube, the video camera, and
inexpensive video tape recorders enabled the development of video art.
Advances in integrated circuit design and fabrication techniques have led
to the development of small but powerful computer systems which can be
utilized by the video artist to achieve a new dimension of control over
the video image. With a computer-based video synthesizer (C3VS), one can
generate a sequence of images while controlling each individual image with
detail and precision that is many orders of magnitude greater than is
possible with manual control.

The ability to control the dynamics of the image is especially useful
to the artist if tne system is capable of generating the image in real time.
With this requirement in mind, the natural choice of devices for conver-
ting electrical signals to visual images is the conventional video system.
This choice also gives the capability of recording the video compositions
with a conventional video tape recorder and of broadcasting to a large
audience throuch existing network systems.

There are basically two modes of operation of the system: inter-
active-compositional mode and automatic-production mode. In the compo-

sitional mode, the artist can enter programs and parameters through the
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keyboard, observe the resulting sequence of images, and then modify para-
meters through either the keyboard or a real time input and thus build

up a data set for a complete piece. The data set, representing all the
aesthetic decisions made by the artist, is stored in the computer at each
stage of the composition. When the composition is finished the system
will operate in the automatic-production mode generating the final video
signal in real time with no intervention by the artist. The artist may
also choose to use a combination of these two modes in an interactive
performance or to allow an audience to interact with the system operating
automatically. The system is structured so that all of these variations can
be accomodated by appropriate programming.

The systen may be operated as a generating synthesizer which produces

a video signal entirely from internal signals or as a processing synthesizer

which utilizes video signals of external origin such as a camera. Either

of these two types of operations is carried out by a configuration of
elements modules, each of which performs a class of functions, with the
specific function during one frame being determined by the control parameters
recieved from the computer.

Since the computer functions only to generate the parameters which
govern the behavior of the synthesizer modules, a video signal will be
generated without operation of tﬁe computer. If the computer is stopped,
the system will simply repeat the current frame until the parameters are
changed. Thus the artist may choose to stop the computer and examine
a single frame, or he may alter the program so that a given sequence is

displayed very slowly or repeated very rapidly.
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II. General Design Considerations

The NTSC video format is shown in figure 1. The time interval
represented by one line is the time of one horizontal sweep or 1/15,734
sec. = 63.5 microseconds. The number by each line indicates the number
of times that each format is repeated. There are 483 active scan lines
and forty-two lines of vertical blanking making a total of 525 lines to
compose one frame (two fields). The first line (a) consists of the
horizontal sync pulse, which is five microseconds long occuring during a
11 microsecond blanking interval, followed by color burst and the picture
information which last 52.6 microseconds. The next line (b) shows the first
equalization pulse which is followed by five more and the beginning of
vertical sync (lines c,d). Vertical sync starts in the middle of the line
for this field and at the beginning of the line for the next field (line m).
Lines e,f,g, and h show the completion of vertical sync with serrations and
six more equalization pulses. Vertical blanking is shown in lines i and j.
The second field starts in line j. Line k shows the 241 lines which inter-
lace with the first field to complete the frame. Finally there are 6 more
equalization pulses before (line 1) and after (line n) vertical blanking
(line m). Line o shows twelve more lines of vertical blanking. This sequencé
is repeated 30 times per second making a total of 108,000 frames per hour.

The portion of the video signal which carries intensity information
is a continuously varying voltage and may be analyzed into components of
different freguencies: low frequency components correspond to course

structures in the image, and hizh frequency components correspond to fine
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structures. Although the video signal may, in general, have an arbitrary
shape, a monitor will reproduce an image which corresponds to only a

limited frequency range. This range is called the bandwidth. Thus components
of the video signal which are outside the bandwidth of the monitor will not
be visible. In a system any device which limits the bandwidth of the video
signal will degrade the fine structure or spatial resolution of the image.

A video signal may be represented by a finite set of samples. These
samples may be stored, gg. in a TBC or frame buffer, and then used to re-
produce the video signal. In this process some of the information may be
lost, but the lost information corresponds to high frequency components or
fine structure of the image. If the sampling rate is sufficiently high, the
lost information will be outside the bandwidth of the monitor, and no impair-
ment of the image will occur. The minimum theoretical sampling rate which
will retain the video information within a given bandwidth is called the
Nyquist rate and is equal to twice the maximun frequency. Thus for broadcast
quality, a minimum of 4.2 Mdz. x 2 x 52 ’}4Sec. = 437 samples per line are
required.

Sach of the samples may be represented by a binary number with B digits.
In general, a binary‘number with B digits has 23 discrete values, and a B-digit
representation corresponds to 2B discrete gray levels. Since the video
signal may have any one of a cohiinuous set of values, an error is introducea
when it is represented by a discrete number. Figure 2 shows the corre-
spondence between binary and decimal numbers, the correspondence between a

continuous video sicnal and its discrete reoresentation, and the resulting

error. This error is called the quantization error, and its root-mean-square
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value is given by s l __l_ t 32. clt __'_ _.L

50(2 28 1z 2"
If B is sufficiently large, the spacing between the discrete gray levels
will be small compared to the intrinsic noise of the system and will not
be visible on a monitor. The minimum acceptable value of B may be estimated
by considering the quantization signal-to-noise ratio which is given by

S/N = 20 log «[ BV 23 = (6.02 B + 10.79) db.

A
The signal-to-noise rai;o for a oﬂe-half inch VIR is about 40 db, so about
five binary digits are required for a comparable quality (monochrome) image.

For the analysis of equipment requirements for generating a video signal,

we may utilize the measure of information given by the mathematical theory of
communication. If a message occurs with probability P, then the amount of
information (measured in bits) is

= log (1/P),
2

Thus, the answer to a question which can be answered by yes or no with
equal probability carries the quantity of information of

log 3/(1/2) = log 2 = 1 bit,
2 2

Since a binary digit‘has two possible values, zero and one, each may carry

at most one bit of informatioﬁ. Thus there -are 5 x 437 x 483 = 1,055,355
bits of information in one framénof monochrome video signal (assuning thirty:
two gray levels and 4.2 Miz. bandwidth). For generating a color signal, one
may represent each of the red, green, and blue primary signals with a five
bit word specified at time intervals of 100 nSec; this corresponds to an

information rate of 150,000,000 bits per second. Other examples of amounts
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of information are typewriter keystroke, about six bits, and one typewritten
page (double spaced), 2,000 bits. The rate at which the human brain can
process information has been estimated to be about forty bits per second.

The mathematical theory of communication introduces another concept,
redundancy, which is useful in analyzinz a video synthesizer system. A
message which contains N bits of information may be coded in a way that uses
more than N binary digits. For example, the message pair (yes/no) may
be coded as (111/050) using three binary digits instead of one per massage.
In this case ‘the coding is redundant. The pattern shown in figure 3 consists
of 15 x 16 = 256 squares, each of which is either all black or all white.
Thus by representing white by one and black by zero, any pattern of this
format can be represented by a code consisting of 256 binary digzits. If all
possible patterns are allowed, then one pattern carries 256 bits of in-
formation. A circuit which gzenerates a video siznal corresponding to this
pattern codes the message into a form with 1,055,355 binary digits (assuming
the spatial and intensity resolution as above). The redundancy of the video
signal is further increased if the set of nossible patterns is restricted
by requiring that thg total pattern is built of sixteen 4 x 4 blocks each
being one of the following: all black, all white, black and white as in
the upper left hand corner, or the latter with black and white interchanged. -
Then two binary digits code thelchoice for each block, and since there are
sixteen blocks, thirty-two bits of information are contained in the entire
pattern.

-The disparity between the rate at which the human brain can process
information, which limits the rate that an artist can manipulate controls

of a video synthesizer, and the rate that information must be generated in
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order to produce a videc signal clearly shows that the synthesizer must
be structured in such a way to exploit redundancy in the video signal. A
microprocessor typically requires 2 to 10 /ﬁSec. to execute a single in-
struction; thus it cannot possibly be used to generate a point every

100 nS as required for a video signal in real time. On the other hand,
one video field last 1/60 = 16.67 mS., a duratiom in which several thou-
sand instructions can be executed. Thus a microprocessor is capable

of generating signals according to a complex algorithm utilizing infor-
mation supplied by the artist to produce control signals for high-speed
special-purpose devices at a field-by-field rate.

Thus we are led to the aierarchical structure shown in Fizure 4

Typical channel capacities are shown for each interconnection. The
syathesizer consists of high speed special purposs circuits which
generate a video signal with a character determinass by the control

siznals supplied by the computer. The control sizmals fix the behavior
of these circuits for an entire field. The computer takes information
suppliad by the artist, information defining the composition as 3 whole,
and from it determines the control parameters required by the synthesizer
for each field. Thus a gradual change in some picture paraneters can

be specified by the artist by a small set of numbers. In the simplest case
only two numbers are required, the frame count of tae firét and last frame
of the sequence. The computer utilizes this information to calculate the
corresponding picture parameters for each field; thus it may produce

several thousand control wvalues.
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ITI. System Structure

The CBVS consists of two parts: the computer section shown in the
lower section of figure 5 and the video section shown in the upper section
of the figure. 3oth sections operate simultaneously and independently,
communicating through the buffer memory which has a capacity of 1,024

sixteen-bit words. Each of these words is either a picture element, a

number which controls some function of the video section and determines

some aspect of one field of the video image, or it is a picture feature, a
number determined by the video section and may depend on an external
signal such as a video camera signal. The buffer memory is connected
to the computer bus through 1 sixteen-bit parallel interface which is
structured in such a way that each word in the buffer memory is addressable
and may be read or written in exactly the same way as words in the main
computer memory. This memory-mapped I/0 system simplifies the software
which controls the buffer memory. In order to update an element such
as a control D/A, the computer must execute an instruction which stores
the new value in the location corresponding to that element.

During the active scan time, the control computer reads features
from the buffer memory and generates elements for the followinc field
and stores them in the buffer manmory. During ths vertical blanking interval,
information is transferred througa the element bus from the buffer menory
to the element modules or from the feature molules to the buffer menmory.
Tne desipnation of a particular area of the b "“er memory as an element

or feature is under program control. During tue transfer Detween the
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buffér memory and the element bus, the computer is locked out of the buffer
memory. On completion of the transfer, the interface zenerates a vectored
interrupt which requests the computer to zenerate parameters for the next
field.

The computer system consists of a DEC LSI-11 microprocessor which
has a sixteen-bit word length and an instruction execution time of about 7
microseconds, a Teletype Xeybocard and printer connected through a serial
interface, 20 K of dynamic memory, and a dual floppy disk system with a
capacity of 256,25g bytes per diskette. An additional serial interface
is also available for connecting through a modem to other computer systenms.
The entire system is dedicated to the synthesizer system.

The overall timing is determined by a 9.7552434 Miz clock which is
phase locked to the subcarrier (3.579545 FHz). This frequency is chosen
to insure a coherent subcarrier and to divide the active portion of the
scan line into 512 pixels. The red, greenjand blue signals are generated
independently, and the chroma encoding is done with analog circuits; thus
there is no advantage to following the common practice of making the pixel
rate an integer multiple of the subcarrier freguency. With this clock
frequency, a full nine bit word is used to define the horizontal position
on the active portion of the raster. Fipure 6 shows the X and Y wave forms.
The X-Y module generates twenty bits of timing information (ten bits for
horizontal, including the blankins period, and ten for the line count).
Tnis nodule also generates sync, drive, burst flag,and the transfer request
TR siznal which controls the tining of the buffer memory.

Timing details of the interface and buffer memory are shown in fi~ure
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7. The transfer request ?i'goes low at the beginning of vertical blanking
initiating an arbitration for access to the buffer memory. If the computer
is accessing the buffer memory, the current bus cycle is completed, then
RZADY goes high, and the buffer memory controller cycles through memory
making the required element and feature transfers through the element bus.
Wnen this is completed, FZADY goes low, control of the memory is returned
to the computer, and an interrupt is generated requesting data for the
following field. As indicated in the diagram, during the Hdth field the
computer is generating data for the N+1th field.

The timings of the siznals on the element bus are indicated in figure
8. Turing the transfer, the memory controller generates the addresse%
Af)-.ﬂ.? , the clock Signals_é,?é , and ;3- , and the status signals CME
indicating a transfer from the memory to an element and CFM indicating
a transfer from a feature module to the memory. The signals ETF and FTE
are generated by the synthesizer modules and initiate a controller Element/
Feature mode change. The three phase clock system is used to control
modules which have the structure shown in figure 9. Functions which use
data from the computer during the vertical blankinz interval are disabled
when the buffer memory accesses that particular 2le-ant by a signal generated
using ;, . This allows access to the buffer memory -iur:'.ngg . The third
clock %; generates a memory write signal.

Time delays in the digital processing modules could produce errors
and shifts of the image to the right. This is pre 2nted by deskewing the
output of each with a latch clocked by the master clock (2,755 Miz).

Compensation for the resulting 102.5 nSec. delay in each module is provided
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by starting the X count at the beginning of the horizontal blanking interval
rather than at the end. An additional shift to the right or left is then
achieved Dy adding (mod 512) a constant supplied by the computer. The

default value of this constant is 404 + number of elements.
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IV. Element and Feature Modules

The structure described above supports a variety of element and feature
modules which may be chosen and configured according to the taste of the
artist. Our experience indicates that a large amount of work can be
produced with a relatively small number of elements in a standard configu-
ration. Whenever possible a new clement added to the system is configured
in such a way that if the control word is set equal to zero it has no
effect on the system. Thus a minimum amount of reprogramming is required
following system expansion.

Two general classes of modules have been developed, digital and hybrid.
The hybrid elements are high-speed digital-to-analog converters used for
generating the red, green, and blue video signals which are converted to
NTSC format in the standard way and low-speed D/A converters used for gen-
erating control voltages, field-by-field controllable, used to operate existing
voltage-controlled analog imags orocessing systems such as keyers, raster
manipulaters, etc. Another hybrid element is the analog video switching
matrix. Four bits qf one control word are used to select one of sixteen
inputs for one output.

Digital processing elements include: cbnstant, X + constant, Y +
constant, twelve-channel sixteén—line demultiplexer with output complement,
and four-channel four-bit by sixty-four word memory.

One of the possible ways of interconnecting dizital element modules
is shown\schenetically in fizure 10. With this arrangement the X and

Y gir sed Sy ti Shvs , < A R R
Y signals are processed Dy the three sequences (A‘Aznjgg, (8,3,3,3,),
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and (c,czcsqq) to produce three different patterns or textures. These
three signals are then combined by element D to produce a composite image.
Finally, the digital-to-analog converter produces an analog video signal.
The form of the video signal generated by this system depends on both
the choice of configuration of modules and on the control parameters
supplied by the computer. Since the control parameters are constant
during one frame, the video signal may be represented by an equation of
the form

V() = £ [ X, Y(0), Ey(8),urenn. E(0)]
where V(t) is the video siznal which varies with time t. The structure
of V(t) and of the resulting image is determinad by the function f which
is defined by the configuration of element modules. The time dependence
of the video signal is shown explicitly; during one field, only X and Y
change while the control values E (t), E,(t), Ej(t),....E(t) are held
constant. The time dependence of the video signal has been divided into
two classes: firstly, the variation from one field and the next is
determined by the computer through the element values, and secondly, the
variation during one field is determined by the element modules through

the X and Y signals for fixed element values.
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Y. System Operation

The power and versatility of this system may be seen by considering
an application to an extremely simplified version of the system consisting
of a pair of camera signals which are mixed by a voltage controlled mixer.
With this system, only one element, a low-speed digital-to-analog converter,
utilizes the element bus, and it generates a control voltage which determines
the mixer operation for each frame. A flow chart of a program and an
example of a data set are shown in figure 11. To use this system, the
artist only needs to specify the numerical values in the data set.

The data set in this example corresponds to the mixer selecting the
first camera until frame numder 600, then fading to the s2cond camera
until frame 700, holding the second camera until frame 2000, then fading
back to the first camera by frame number 2200, The values 8 and 4 in the
parameter column determine the rate at which the fade takes place, and
the numbers in the service routine column label indicate the selected
service routine: a 1 for no change, a 2 for increasing the control voltage
by P units,and a 3 for decreasing the control voltage by P units.

After the artist has stored these twelve numbders in the computer
memory, the program may be started, and the computer will initialize
the system and go to a background program where it waits for an interrupt.
After every other interrupt the frame count is incrzased by one and
compared with the frame count entry in the data set. Then the appropriate
service routine (S2) is selected, and the element value is increased or

decreased as requirad. ?inall%,the computer returns to the background
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progfém and waits for the next interrupt. This process is repeated
for every field thus generating the sequence of control voltages and
fading from one camera to the other.
The artist can observe the resulting sequence of images and then
make changes in the data set to achieve the desired result. This
technique may be extended to more complex systems involving several
elenents and feature modules with corresponding programs and data sets.
Thus the artist can produce complex sequences with precise control of
each frame, _Hhen the composition is finished, the system will automatically
generate the video signal which may be displayed on a monitor or recorded

on a VIR.
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Development Program

The first program was developed for Woody Vasulka who uses an LSI-11
microcomputer interfaced to video synthesis modulas including digital to
analog converters,(D/A's), analog to digital converters (A/D's), Don
McArthur's modules described elsewhere in this report and George Brown's
multiple level keyer.

The D/A's and A/D's are controlled through four words in memory as

follows:

L. status word - LEWSTA at location 167770
8

2. output worR - LEWOUT at location 167772
8

3. input word - LEWIN at location 167774
8

4. channel address - LEWCHA at location 167776
8

¥McArthur's modules are controlled through the buffer memory which
appears as normal memory to the program. Any location in buffer memory
can be read in or written to, and finally arithmetic and logic operations
ean be performed thereupon. This technique of "memory-mapped I/0" makes
the programmer's 1ife much easier and besides it's quick - important because
all modules must be updated in less than 1/60 sed. Control words for

MeArthur's modules are located in the upper reaches of memory as follows.
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NEA Development Program

Next the system macros are invoked with the following statements:

BEGIN:

«MCALL

..v?..

.REGDEE

F

-.Vzo - ,CREGEF‘ amT

The label BEGIN: is used by the linking loader to identify the entry point

for the main program.

program:

.END BEGIN

This is done using this statement at the end of the

The ..Y2.. macro identifies the monitor system being used by the LSI-11.

The .RECDEF pacro defines the LSI-11's internmal registers using two char-

acter mnemonics as follows -

10
2)
3)
u)
5)
6)
7)
(:; 8)
Now
1)

2)

3)

RO

Rl

RY

RS

PC

SP

-

general purpose
general purpose
general purpose
general purpose
general purpose

general purpose

A
program counter regilter; oad! u\)mzf-’( w

stack pointer, register/é

register

register

register
register
register

register

M

5

;*“xygnlv fee execabd

BT o\ locd CM&‘\ g

we're ready to initialize the D/A's which is accomplished thus -

MOV

MOV

DEC

#100000, @# LEWOUT
#10,R0

RO



&)
5)

6)
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MOV R0,@# LEWCHAZ
TST RO
BNE IS

The first line of code meves the octal number 100000 to the output

word in memory which controls the D/A's. This causes the D/A to output a

constant OV (+10Vw= 177700 § -10V = 0). The prefix # defines a real

number, and the prefix @# defines an address (2 location in memory).

However the data transfer is nct consummated until the D/A chamnel is

addressed through the channel address word. The are 8 D/A chammels C - 7.

Therefore we set register 0 to the octal number 10 = decimal 8 (line 2).

Then we count down register ¢ with a loop (lines 3,5 & 6) and at the same

time enable the D/A's by moving the contents of register 0 to the channel

address word (line 4).

And we initialize the buffer memory -

1)
2)
3)
4)
5)
6)
7)
8)

9)

MOV

CLR

CLR

MOV

CLR

#DONOUT_, RO
(r0) +
(RO) +
(RO) +
(rRO) +
# JEFOUT , RO
(rO) +
(RO) +

(RO) +
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This code uses the auto-increment mode of addressing (register) +.
Line 1 moves the octal number 171040 into register 0. Then we clear that
memory location and add # 2 to register 0 which now points to the next
word in memory (lines 2-5). This sets the red, green and blue 1671 select
channels to black and the inversion register to normal (non-inverting).
Similiarly the ALU's are set to pass red, green and blue respectively.

The maximun number of data buffers is set -

MOV3  #20 , TMRY

That is, the progran tolerates no greater than octal 20 = 16 decimal buffers.
This fact is recorded in the byte labelled TMRY.

Fach data buffer is associated with four parameter words and these
6% words (4x16) are kept in the parameter buffer PBUF. We initialize

this buffer as follows -

1) MOV #PBUF , RO
2) SUB #10 , RO
*MW&
3) BGN2: CMPB TMRX , TMRY B
- Heraka, TWMRR ey

) BPL TMR P

: y | o | ftocad |
5) INCB  THRX 20 1 LM_O
€) ADD #10 , R 7) P || #9609 g'

4 7 E'OV?;&"]I

7) CLR (R0) 1 |
8) MoV £, 2(R0) *]
3) MOVB  TMRX , RL T 5

10) DEC Rl g
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11) SWAB Rl

12) 4B= ADD #DBUF , R1

13) Mav Pl , & (RO)
i4) CLR 6(R))
15) BR BGN2

16 PBUF: .= ,i%00 ~2085
Again we use a loop; we set register 0 to the location of l"BU'Ph8 (lipes 1
and 2). Note PBUF is cfeated by causing the program counter (.) to skip
over 54 words of memory (line 16). The loop is controlled by TRRX andT
TMRY. TMRX counts up to the maximum number of data buffers, then a branch
to the next block of code is executed (lines 3,4,5 and 15). The four

pRBan2terswords are -

1) tinming counter R

: 2(R@)
2) timing Interval ¢ o)
3) pointer to DBUF ef)
4) data

The first word is cleared (line 7). The timing interval is set to a single
field (line 8). VNext address of the data buffer is calculated and put in
the third word (lines 2-13). There are 16 data buffers each containing
128 words. Therefore the pointer is set initially as follows -~

pointer = #DBUF + (256 * (TMRX - 1))

This formula is coded from right to left.
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In line 9 TMRX iIs moved into register 1/ the decrement instruction in

line 10 subtracts 1 from the register: the wamap byte instruction in line

11 effectively multiplies the register by 256 (equivalent to 8 left shifts
or multiplication by 23); DBUF is added to register in line 12; and finally
in line 13 the result is stored in the parameter buffer using the indexed
addressing mode (6(20) the contents of register 0 plus the index 6 produce

the effective address).

from here we go to the timing routine (TMR). This routine enables the
1/60 sec interrupt, and every 1/60 sec polls the parameter buffer checkine
for time cuts (timing counter equal timing interval). If a data buffer

times out a branch to the next block of code is esecuted.

The buffer memory transfers data to the modules during the vertical
interval between each field of video. Then the buffer memory generates
an interrupt telling the computer to get working on data for the next
field. This interrupt is enabled or disabled with the status word (G#
DONSTA). If the status word equals 1 the interrupt is enabled; if 0O the
interrupt is disabled. So much for the buffer memory -~ the LSI - 11
handles interrupts thus. The computer interrupts its normal flow of
operations and as a precaution pushes the current program counter (®C or
register €) and the program status word (PSW) onto the stack. The stack

pointer (SP) is decremented by 4. Then the computer goes to a predeter-
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mined location in memory (in this case @# 170) and uses the contents of
this location as the new program counter (PC). Ixecution begins anew
from the location pointed to by @f 170. Usually this is an interrupt

service routine, however I have taken a shortcut as explained below.

1) 1) T™MR: MOV #TMRI , @F L%0

2) CLRB TMRX
3) INC @# DONSTA
%) BR 3

§) TMRI: CIR @# DONSTA

6) ADD 4 4 SP

In line 1 we prepare for the inevitable interrupt by loading location
170 with the location #TMRI; the location where we will resume execution.

Next the fuffer counter (TMRX) is cleared and the interrupt is emabled QLT ..

2 and 3). Now we wait for the interrupt by executing the branch instruction
on line 4. Following the interrupt we return to line § and disable further
interrupts by clearing the status word in the buffer memory. Then in line

6 we do some housekeeping, restoring the stack pointer (SP).

He are now ready to poll the data buffers -

= 1) MOV #PBUF , RO




2) SUB

3) TMRZ: CMPB

4) BPL
5) INCB
€) ADD
7) ¥OVB
8) DEC
9) ADD
10) TSTB
11) BEQ
12) rve
13) CMP
14) BLE

15) TMR3: CILR
16) JER
17) BR
18) TMRX: .BYTE

19) TMRY: +BYTE

Again we have a loop similiar to the loop used to initialize the
parameter buffer. Lines 1 and 2 lead register O with #PBUF - 8.

23 the counter (TMRX initially 0) and the number cf buffers (TMRY) are

NEA Development Program

#10 , ®O
THMRX , TMRY
TMR

TMRX

#10 , RO
TMRX , R 2
R2

#EBUF , R2
(R2)

TMR2

(r0)

(r))

(rC)

PC , INT
TMR2

0

0

pacze 9

In line

compared. Assuming all the buffers were checked we branch back to wait for
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the next interrupt (line 4). Otherwise we increment register 0 by &
(line 6) and check the enable buffer (lines 7 to 10). If the buffer is
disabled (the contents of location ¥EBUF + (TMRX - 1) equal 0) we branch
back to TMR2 (line 11). 1If the buffer is enabled the timing counter is
incremented (line 12) and compered with the timing interval (line 13).
Tf the counter is less than or equal the interval we branch back to TMR2
(line 14).0tOtherwise we clear the timing counter and jump to the inter-
preter routine (lines 15 and 16). Upon returning from the interpreter,
(1ine 17), we branch back to TMRZ completing the timing routine. Lines
18 and 19 reserve space im memory for the buffer counter (THRX) and the

nebber of buffers (TMRY).
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The interpreter reads a command word from the data buffer and uses

this word to create a special jump subroutine instruction. The subroutine

in turn executes the command reading additional data words from the buffer

as required.

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)

13)

INT:

INTI:

MOV
MOV
ASL
ADD
MOV
SUB
Mov
CLR
JSR
MoV
TST
BEQ

RTS

4(RO) , R1
(R1)+ , R2
R2

#JBUF , R2
(R2) , R2
#INTI , R2
R2 , INTI-2
RS

PC , EXIT
Rl , 4(RO)
RS

INT

PC

Remember that register 0 contains the address of the first of the four

parameter words controlling the data buffer. In line 1 the data pointer

(4(R0)) is moved to register 1. Then the command word ((Rl)+) is moved

from the data buffer to register 2; and the data pointer in auto-incremented
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(line 2). The jump subroutine through the program counter instruction
(line 9) is decoded by the assembler as two words - 004767 , XXXXXX. The
first three digits of the first word (004) indicate a JSR instruction.
The fourth digit (7) indicates that register 7 (PC) will be the linkage
pointer. The fifth and sixth digit represent the destination, the fifth
digit specifies the index addressing mode and the sixth digit indicates
that the index value follows the instruction. The index value plus the
program counter equals the destination address. In lines 3 - 6 the index
value is calculated using these formulae -

1) index = subroutine entry pt - # INTI

2) subroutine entry pt = # JBUF + (2 #*Command word)
The index value is moved to location INTI - 2 (line 7). Register 5 is a
done flag set following the output command, it is cleared initially (line
8). The jump subroutine instruction is executed (line 9), the program
executes the appropriate subroutine, and returns to restore the data buffer
pointer (line 10). The done flag (R5) is tested (line 11); if zero the
program branches back and reads the next command word (line 12), or returns

to the timing routine (line 13).

A cross reference table (JBUF) follows the interpreter. The entry
points for the subroutines are stored sequentially and are accessed with the

command word. A summary of the function of each subroutine follows -
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SUB0O - (00) sets the timing interval (second word in the parameter list)
equal to the next word in the data buffer.

MOV (RL) + , 2 (RO)
SUBO1 - (01) adds the next word in the data buffer to the timing interval.

ADD (R1) + , 2 (RO)
SUB02 - (02) subtracts the next word in the data buffer from the timing
interval.

SUB (R1) + , 2(RO)
SUB0O3 - (03) complements the timing interval, equivalent to 177777 -
timing interval. :

COM 2(RO)
SUBO4 - (0u4) shifts the timing interval to the right, the most significant
bit (bit 15) is cleared, equivalent to timing interval/2.

CLR

ROR 2 (RO)
SUBO5 - (05) shifts the timing interval to the left, the least significant
bit (bit 0) is cleared, equivalent to 2* timing interval.

CLR

ROL 2 (RO)
Command words 06 and 07 are not used, therefore they are cross referenced
to the error routine ERR in JBUF.

SUB 10 - (10) sets the data word (fourth word in the parameter list) equal

to the next word in the data buffer.
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MOV (R1) +, 6 (RO)

SUB 11 - (11) increments the data word, equivalent to data word + 1.

INC 6(RO)

SUB 12 - (12) decrements the data word, equivalent to data word - 1.

DEC 6 (RO)

SUB 13 - (13) adds the next word in the data buffer to the data word.
ADD (R1) +, 6 (RO)

SUB 14 - (1u4) subtracts the next word in the data buffer to the data word.
SUB (R1) +, 6 (RO)

SUB 15 - (15) complements the data word, equivalent to 177777 - data word.
COM 6 (RO) :

SUB 16 - (16) shifts the data word to the right, the most significant bit

(bit 15) is cleared, equivalent to data word/2.

bit n becomes bit n-1

bit 0 dropped
CLC
ROR 6 (RO)
SUB 17 - (17) shifts the data word to the left, the least significant bit

(bit 0) is cleared, equivalent to 2% data word.

bit n becomes bit n+l

bit 15 dropped
CLC

ROL 6(R0)




i)
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SUB 20 - (20) rotates the data word to the right, shifts the bits right,
the least significant bit (bit 0) is rotated around to become the most
significant bit (bit 15).
35 -0
bit 0 becomes bit 15
MOV B LRE) , R2
ROR R2
ROR 6 (RO)
o SUB 21 - (21) rotates the data word to the left, shifts the bits left,

the most significant bit (bit 15) is rotated around to become the most

significant bit (bit 0).

15 0

bit 15 becomes bit 0

MOV 6 (RO) , R2
ROL R2
ROL 6 (RO)

SUB 22 - (22) takes the next word in the data buffer and clears each bit
in the data word which corresponds to a set bit in the former, equivalent

to - data word = ~~#next word in buffer/\ data word
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eg. next word in buffer 0 000 001 010 011 100

data word 0 000 001 101 100 111
data word 0 000 000 101 100 011
BIC (R1) +, 6 (RO)

SUB 23 - (23) takes the next word in the data buffer and sets the corre-

sponding bits in the data word, equivalent to - data word + next word in

buffer V data word.

eg. next word in buffer 0 000 001 010 011 100

data word 0 000 001 001 001 001
data word 0 000 001 011 011 101
BIS (r1) +, 6 (RO)

SUB 24 - (24) takes the next word in the data buffer and exclusive OR's

(>F) it with the data word.

eg. next word in buffer 0 000 001 010 011l 100

data word 0 000 001 001 001 001
data word 0 000 000 011 010 101
MOV (rl) +, R2

XOR R2 , 6 (RO)
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Command words 25, 26 and 27 are not used, therefore they are cross-refer-

enced to the error routine ERR in JBUF,

SUB 30 - (30) calls the input routine and sets the data word equal to input

data (in register 2).
JSR M1

MoV R2 , 6 (RO)




SUB 30 - (30) calls the

input data (in register
JSR
MOV

SUB 31 - (31) calls the

word.

ADD
SUB 32 - (32) calls the
the data word.

JSR

SUB
SUB 33 - (33) calls the
word as in SUB 22,

JSR

BIC
SUB 34 - (34) calls the
as in SUB 23.

JSR

BIS

SUB 35 - (35) calls the

NEA Development

input routine
23,

PC , IN

R2 , 6 (RO)

input routine

PC , IN
R2, 6 (RO)

input routine

PC , IN
R2 , 6 (RO)

input routine

PC , IN
R2 , 6 (RO)

input routine

o S ¢
R2 , 6 (RO)

input routine

with the data word as in SUB 24,

JSR

XOR

PC , IN

R2 , 6 (RO)

and

and

and

and

and

and
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sets the data word equal to

adds the input data to the data

subtracts the input data from

clears each bit in the data

sets each bit in the data word

exclusive OR's the input data
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Command words 36 and 37 are not used, therefore they are cross-referenced
to the error routine ERR in JBUF.
LOOP - (40) this subroutine uses the next three words in the data buffer
to create a repeating loop in the data buffer. The three words are -

1) a counter, incremented each repetition

2) maximum number of repetitions

SJ'KEQUnteﬁ§to the top of the loop

Each time a loop command (40) is encountered in the data buffer, the
loop subroutine first compares the counter with the maximum number of
repetitions (line 1). If the counter is less than the maximum number
the counter is incremented, the pointer to DBUF (third word in the para-
meter 1i§t) is updated with the pointer to the top of the loop, and return
to the interpreter (lines 3-5). If the counter is equal to or greater
than the counter we branch to LOOP 1 (line 2), clear the counter (line 6),

step the data buffer pointer (line 7), and return to the interpreter (line

8).
1) LOOP: CMP (R1) , 2 (R1)
2) BPL LOOP 1
3) INC (R1)
4) MoV 4 (R1) , R1
5) RTS PC
6) LOOP 1: CLR (R1)
7) ADD #6 , RL
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8) RTS iy

Command words 41 - 45 are not used, therefore they are cross-refer-
enced to the error routine ERR in JBUF. The error routine is in reality
the exit routine -
EXIT - (47) this subroutine is invoked overtly by command word 47 and covert-
ly by 06,07,25,26,27,36,37,41,42,43,44 and 45. It ends the program in a
relatively painless manner and returns control to the system monitor using
the .EXIT macro.

.EXIT

The input subroutine services these fourteen input devices -
1 - 8) 16 word data tables defined by user
3 - 12) analog to digital converters

13) real time interface

14) random number generator
The first part of the input routine retrieves data from the tables (input

devices 1 - 8)

1) 1IN: MOV (R1) + , R2
2) CMP R2 , #11
3) BPL INL

4) MOV (R1) +, R3
5) DEC R2

6) ASL R2

7) ASL R2
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8) ASL R2

9) ASL R2
10) DEC R3
11) ASL -~ R3
12) ADD R3 , R2
13) ADD #TABLES , R2
14) MOV (R2) , R2
15) RTS PC

In line 1 the input device number is transferred from the data buffer to
register 1, and the buffer pointer incremented. If the device number is
greater than 8 branch to IN1 (lines 2 and 3). If not move the table entry
number to register 2 and calculate the location of the data (lines 4 -

13) as follows -

location = # TABEES + 2 * (entry number - 1) + 16 #* (device number - 1).
Finally register 2 transforms itself into the requested data (line 14) and

we return to the calling subroutine (line 15).

The second part of the input routine services the analog to digital

converters (input devices 9 - 12) -

1) I CMP 2 , #1315
2) BPL IN2
3) SUB e

4) MoV R2 , @# LEWCHA
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5) MoV @# LEWIN , R2

6) RTS ¥C
Again we test the device number. If greater than 12 branch to IN2 (lines
1 and 2). The channel address is calculated and moved to the control word
LEWCHA (lines 3 and 4). The data appears at the input word LEWIN and is

tramsferred to register 2 (line 5). We return to the calling subroutine

(line 6).

The third part of the input routine service Don McArthur's real time
interface (a register loaded from the outside world using toggle switches,
input device 13).

1) 1IN2: CMP R2 , #16

2) BPL IN3
3) MOV @# DONIN , R2
4) RTS PC

A model of the efficiency of memory mapped I/0; but first we test the
device number. If greater than 13 branch to IN3 (lines 1 and 2). In
a single of code the data is transferred to register 2 (line 3) and we

return to the calling subroutine. Good work Don!

The final section of the input routine is a random number generator

of sorts (input device 14%) -




1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

21)

IN3: CMP

BPL

MOV

CLC

ROL

BCC

INC

RND1: ROL

BCC

INC

RND2: ROL

BCC

INC

RND3: ROL

BCC

INC

RND4 : CoM

ADD

MOV

INY : RTS

TEMP: .WORD
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B .17
ING

TEMP , R2

RND1
R2
TEMP + 2

RND2

TEMP + 4
RND3

R2

TEMP + 6

RND4

& . 5.8 .6

Test the device number, if greater than 14 return to the caliing program

via IN4 (iines 1, 2 and 20). Now we perform a left shift on TEMP (a

giant 64 bit word).

This is done in 4 steps (of 16 bits) through the
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carry register (1 bit).

B4 us8 u7 32 31 16 15 0

TEMP+6 TEMP+4 TEMP+2 TEMP
c3 c3 a2 cl
TEMP = TEMP + (-1) ®* (TEMP + C4 + C3 + C2 + C1)
The initial value of TEMP is stored in register 2 and the carry register
cleared (lines 3 and 4). Now the 4 shifts are executed and the resultant
carrys added to register 2 (lines 5 - 16). We wrap it up (lines 17 and
18), move the low order 16 bits to register 2 (line 19), and return to
where we came from (line 20). Space for the TEMP is created with the

.WORD macro (line 21).

The output subroutine services these fifteen output devices -
1-8) digital to analog converters
9) red 16:1 select channels

10) green 16:1 select channels

11) blue 16:1 select channels

12) inversion register

13) red ALU (arithmetic logic unit)

14) green ALU

15) blue ALU

Through an unaccountable memtal lapse on my part, the data buffers correspond
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directly to the output devices - data buffers 1-8 control the A/D's,
data buffer 9 controls the red 16:1 select channels, and so on. The

first part of the output routine controls the A/D's -

1) OUT: CMPB  TMRX , # 11

2) BPL OUT 1

3) MOVB TMRX , R2

ey DEC R2

5) MOV R2 , @# LEWCHA

6) MOV 6 (RO) , @# LEWOUT
7) INC RS

8) RTS PC

If the buffer number is greater than 8 branch to OUTL (lines 1 and 2).
If not calculate the channel address and move it to the control word
LEWCHA (lines 3 - §). Next move the data to the output word LEWOUT, set

the done flag (register 5), and return to the calling program (lines 6-8).

The second part of the routine controls Don McArthur's 16:1 selects
and inversion register -

1) OUT1: CMPB TMRX , # 15

2) BPL ouT2
3) MOVB TMRX , R2
4) SUB i, R

5) ASL R2
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6) ADD # DONOUT , R2
7) MOV 6 (RO) , (R2)
8) INC RS
9) RTS PC

If the buffer number is greater than 12 branch to OUT2 (lines 1 and 2).
If not calculate the output address (lines 3 - 5) -

output address = # DONOUT + 2 # (TMRX - 9)
Finally we transfer the data word to output address, set the done flag

line, and return to the calling program (lines 7 - 9).
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Part three of the routine is similiar; it controls Jeff Shier's arith-

metic logic units -

1)
2)
3)
4)
5)
6)
7)
8)

9)

ouT2:

oUT3:

CMPB

BPL

MOVB

SUB

ASL

ADD

MOV

INC

RTS

TMRX , #20
ouT3

TMRX , R2
#15 , R2

R2

# JEFOUT , R2
6 (R0) , (R2)
R5

- 5

If the buffer number is greater than 15, game over, we return to the calling

program via OUT3 (lines 1,2,8 and 9). If not calculate the output address

(lines 3 and 5 ) -

output address = # JEFOUT + 2 * (TMRX-13)

Finally we output the data word, set the done flag, and return (lines 7-9).
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In the program areas of memory are reserved for data buffers including -

1) EBUF - the enable buffer indicates whether the data buffer is active.

2) PBUF - the parameter list used by the timer and interpreter to access
the data buffers.

3) TABLES - used to store prepared data, accessed with the input sub-
routine (IN).

4) DBUF 1 - 15 - sixteen data buffers containing sequences of command

words which control the available input/output devices on the system.

EBUF

PBUF

DBUF 1




These data buffers become a seperate program which is linked to the

main program by the system loader before execution.

Data Buffers and Programming Techniques

First we establish
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the globals identifying the labels common to both the main program and the

data program -

. GLOBAL

There are eight tables of sixteen words (8 X 16 = 128).

sequence of code will reserve memory for the tables.

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)

15)

TABLES:

TBL1:

TBL2:

TBL3:

TBLY :

TBLS:

TBL6:

TBL7:

TABLES

TABLES

TABLES

TABLES

TABLES

TABLES

TABLES

TABLES, EBUF, DBUF

20

40

60

100

120

140

160

The following



16)

17)

Note the first two labes are synonymous (TABLES and TABLl lines 1 and 2)

for conven

of sixteen words is reserved by setting the program counter (.) to the
next heading or label (line 3, etc).

Tables are filled in as illustrated in the following example -

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

16)

Data Buffers and Programming Techniques

TBLS:

. = TABLES + 200

ience. After each table

TBL1: .WORD

.WORD

.WORD

.WORD

.WORD

. WORD

.WORD

.WORD

.WORD

. WORD

.WORD

. WORD

.WORD

. WORD

.WORD

.WORD

104210

177777

167356

156735

146314

135673

125252

114631

73567

63146

52525

42104

31463

21042

10421

0
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heading (TBL1, TBL2, etc) a block



line 1)
line 2)
line 3)
line 4)
line 5)
line 6)
line 7)
line 8)
line 9)
line 10)
line 11)

line 12)

line 13)
line 14)
line 15)

line 16)
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This table contains the simplest bar patterns available on Don McArthur's

16:1 select modules.

represents a solid field

two horizontal bars

four horizontal bars

eight horizontal bars

sixteen horizontal bars

thirty-two horizontal bars

sixty-four horizontal bars

one hundred and twenty-eight horizontal bars
two vertical bars

four vertical bars

eight vertical bars

sixteen vertical bars

thirty-two vertical bars

sixty-four vertical bars

one hundred and twenty-eight vertical bars

two hundred and fifty-six vertical bars

Other tables are useful - shaded bar patterns, crosshatch patterns, and

masks for example.

Following the tables is the enable buffer (EBUF), a short buffer of six-

teen bytes (eight words) set 0 for an inactive buffer, and 1 for an active

. =5 buffer.




1)
2)

3)

EBUF:
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.BYTE 0,0,0,0,0,0,0,0
.BYTE 1,1,1,1,0,0,0,0

. = EBUF + 10

In the example only buffers 9,10,11 and 12 are active and the remainder

inactive,

The block of eight words is created (lines 1 and 2) and the

program counter set to the next label (line 3).

Now we reserve memory for the sixteen data buffers as follows -

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

16)

DBUF:

DBUF1:

DBUF2:

DBUF3:

DBUF4 :

DBUFS:

DBUF6:

DBUF7:

DBUF8:

= DBUF + 400

. = DBUF + 1000

. = DBUF + 1400

. = DBUF + 2000

. = DBUF + 2400

DBUF + 3000

DBUF + 3400




17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)

34)

Again the first two

DBUF9:

DBUF10:

DBUF1l1:

DBUF12:

DBUF13:

DBUF14:

DBUF15:

DBUF16:
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= DBUF + 4000

DBUF + 4400

= DBUF + 5000

= DBUF + 5400

DBUF + 6000

DBUF + 6400

DBUF + 7000

DBUF + 7400

DBUF + 1000
END TABLES

labels (DBUF and DBUF1l, lines 1 and 2) are synonymous.

After each buffer heading (DBUFl, DBUF2, etc.) a block of one hundred and

twenty-eight words is reserved by setting the program counter (.) to the next

heading or label (line 3, etc.).

An example of a real data buffer follows -
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1) DBUFS: .WORD © , 60.
2) .WORD 10 , 31020
3) .WORD 46

%) L901: .WORD 13 , 10421

5) .WORD 46
6) .WORD 40 , 0 , 777 , L901
7) .WORD 47

The data buffer is filled with a sequence of command words used by the
main program to control, in this case, the McArthur's red 16:1 select module.
First the timing interval is set to 1 sec. (60 fields, line 1). The command
word is 0, the interval is coded as 60. the period indicating a decimal (rather
than octal) number. The command 10 sets the data equal to the octal number
31020 (line 2). Finally a 46 causes the data to be transferred to the buffer
memory. The main program goes on to the next buffer and will not return to
this buffer for another 60 interrupts or 1 sec. When it does return (to line
4) it adds the octal number 10421 to the data and transfers the sum to the
buffer memory (line 5). Again the main program returns after 1 sec. I returns
(to line 6) and finds a loop command - 40. Initially the counter is 0, the
number of times through the loop will be 777 octal, and the data buffer pointer
will be set back to L901. The main program will repeat lines 4 - 6, 777 octal
times and then expire (line 7).

Review of command codes (in JBUF) -

00 - 0 , N ; set the timing interval (first word in PBUF)




01

02

03

oy

05

10

11

12
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interval = N where 0 < N < 200000
8

- the interval is the number of fields the main program waits before
returning to the data buffer for the next command.

1 , N ; add to the timing interval

interval = interval + N

2 , N ; subtract from the timing interval

interval = interval - N

3 ; complement the timing interval

interval = interval ¢ 177777
8

4 ; shift the timing interval right
interval = interval +— 2

an interval of 1 sec becomes % sec.
5 ; shift the timing interval left
interval = interval * 2

an interval of 1 sec becomes 2 sec.

10 , N ; set the data word (fourthe word in PBUF)

data = N where -1 < N < 200000
8

11 ; increment the data word

data = data + 1 note: 177777 + 1 =0"°
8

12 ; decrement the data word
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13

1y

15

16

17

20

21
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data - 1 note: 0 -1 = 177777
8

data

13 , N ; add to the data word

data data + N

i€ 177777 - data < N then
8

data N -

14 , N ; subtract from the data word

data = data - N
if N D data
16
data = 2 (N - data)

15 ; complement the data word

data = data % 177777
8

16 ; shift the data word right
data = data +—2
17 ; shift the data word left
data = data * 2
20 ; rotate the data word right
15 0
bit N becomes bit N-1
bit 0 becomes bit 15
21 ; rotate the data word left
15 0
bit N becomes bit N+l

bit 15 becomes bit 0
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data = data /\ ¥

old data 0 110 101 011 010 111

N= 0 100 001 101 100 010

22 - 22 , N 3 bit clear, data word with N

065327
8

- 041542
8

new data 0 010 100 010 010 101

23 - 23 , N ; bit set, data word with
data = data \/ N
old data 0 110 101 011 010 111

i N 0 100 001 101 100 010

new data 0 110 101 111 110 111

24 - 24 , N ; XOR , data word with N

data = data 3@+ N

old data 0 110 101 011 010 111

N 0 100 001 101 100 010

new data 0 010 100 110 110 101

30 - 30 , N1 , N2 ; get data with N1

N2

- 024225
8

-065767
8

- 024665
8

1 to 8 (device number)

1l to 16

- register 2 becomes the value contained in table N1 , entry N2.

| - with N1 = 9 to 12 (device number)

-register 2 becomes the value sensed by A/D Nl.
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31

32

33

34

35

Lo
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- with N1 = 13

- register 2 becomes the value sensed by the real time interface (device
number 13),

- with N1 = 14

- register 2 is set by the random number generator

- note if N1 = 9 to 14 then N2 is not used, and the command takes the
form - 30 , N1

31 , N1 , N2 ; get new data and add to old data

combines commands 30 and 13

32 , N1 , N2 ; get new data and subtract from old data
combines commands 30 and 14

33 , N1, N2 ; get new data and bit clear with old data

see commands 30 and 22

34 , N1 , N2 ; get new data and bit set with old data

see commands 30 and 23

35 , N1 , N2 ; get new data and XOR with old data

combines commands 30 and 24.

40 , N1 , N2 , LABEL ; loop command

- the program is set to repeat a sequence of commands where -
Nl = 0 , used as a counter by program

N2 = 0 - 177777 , number of repetitions

LABEL , pointer to top of loop

- example of single loop -




1)
2)

3)

- example of

1)
2)
3)
4)

5)

LABELL:

LABELl:

LABEL2:

Data Buffers and Programming Techniques

command

command

40 , 0 , 100. , LABEL 1
nested loops -

command

command

command

40 ,.0 , 100. , LABEL2

40 , 0 , 100. , LABEL1l

- example of multiple loops -

1)
2)
3)
4)
5)

6)

LABEL1:

command
command
40 , 0 , 100, , LABELl
command
command

40 , 0 , 100. , LABELl1

46 - 45 ; output command

the data word contained in
buffer memory and the main

47 - 47 ; the exit command, the

end, finis.

the parameter list is transferred to the

goes on to the next data buffer,
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Now for some simple (minded) examples of programming techniques. The
easiest devices to program are the D/A converters (output devices 1 - 8)

which translate a number into a control voltage as follows -

1777XX = + 10V
1000XX = ov
OXX = - 10V

XX - low order bits 0 - 5 not used

A Simple Ramp

1) 0, 60
2) 10,0
3) 46

§) Lioli: 13 , 100

5) ug
6) By 6 3TN 1301
+ 110V
ov
-10V
t°= o t+ = 1024 seconds

3




In line 1 we set the timing interval to 60 fields or 1 sec.

Data Buffers and Programming Techniques

LS't = 1 sec
[} V = 20/1024 V
duration

amplitude = 20V pp around OV

1024 seconds

We set the

D/A to -10V (line 2) and output this value to the D/A (line 3). Now we

construct a loop (lines 4 to 6).

the commands to be repeated are add 100 to the data and output the new

value to the D/A.

8

This is repeated 1776 times.
8

A simple method for understanding a loop is shown in this table -

# repetitions

old data new

data

1

0

100

200

300

400

500

600

700

0+

100

200

300

400

500

600

700

100 =

+ 100

+ 100

+ 100

+ 100

+ 100

+ 100

+ 100

100

= 200

= 300

= 400

= 500

= 600

= 700

1000
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The label L101 sets the top of the loop,
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A Repeating Sawtooth

1) 05,1
2 sL01: 30,0
3) 46

4) L102: 13 , 10000

5) 46
6) AT e
7) 40 , 0 , 10000. , L101

+ 10V
ov
- 10V
t =20 ¢t = 16 fislds
0 1
At = 1 field
Av = 1.25v

frequency - approx 4 Hz
amplitude - 20V pp
This could be a negative going sawtooth -
1) 0,13
2 LAGi: 10 , 177100

3) 46
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4) L102: 14 , 1000

5) 46

6) 8 ., 0 .37 ., 08

7) 14 , 7700

8) 46

9) 40 , 0 , 10000. , L101

In both examples a pair of nested loops is used, loop 101 repeats the basic
wave form 10,000 times (lines 2 - 9) and loop 102 builds the waveform (lines
4 - 8).

There is a simpler way of building a sawtooth which uses the wrap around

feature of the CPU's arithmetic logic unit -

1) e
2) 10 , 0
3) 46

) 16): 18 . 10000

5) 46
6) 40 , 0 , 20 , L101
7) 40 , 0 , 10000. , L101

This produces exactly the same waveform as the first example. On the sixteenth

repetition we get 170000 + 10000 = 0, which completes the inside loop. The
8 8
outside loop remains the same.
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Repeating a WV Triangle

1) i
2) 10 , 0
3) 46

4) L10l1: 13 , 10000

5) 46

6) 8 . 0,27 ; B
7) 13 , 7700

8) 46

9) 14 , 7700

10) 46

11) L102: 14 , 10000

12) 46
13) 5,0, 17 , 1a02
14) 80 . 0 . 1000.. 114Gl
+ 10V
ov
- 10V
t =9 t = 32 filelds
0 i
t = )} field
vV = 1,25V
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frequency - approx. 2 Hz

amplitude - 20V pp.
Again the timing interval is set to 1 field and D/A converter set to 0V
(lines 1 - 3). The outside loop (lines 4 - 14) repeats the waveform 1000
times. The first inside loop builds the positive going slope of the triangle
(lines 4 - 6). Then, the peak of the triangle is formed (lines 7 - 10). The

second inside loop builds the negative slope (lines 11 - 13).
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Making a Sine Wave

First examine this table of numbers

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

21)

0

100
300
700
1700
3700
7700
17700
27700
37700
47700
57700
67700
77700
107700
117700
127700
137700
147700
157700

167700

+100

+200

+400

+1000

+2000

+4000

+10000

"

n

page 45




page U6

Data Buffers and Programming Techniques

22) 173700 +2000
23) 175700 41000
24) 176700 +400
25) 177300 +200
26) 177500 +100

27) 177600

The table is coded as follows -

1) 0,6.
i~ 2) 10,0
3) 46
4) 13,100
5) 46
6) 13,200
7) 46
8) 13,400
9) 46
10) 13,1000
11) 46
| 12) 13,2000
! 13) 46
14) 13,4000

15) 46




16)
17)
18)
19)
20)
21)
22)
23)
24)
28)
26)
27)
28)
29)
30)

+10v

Ov

=10V

1101:

Data Buffers and Programming Techniques

13,10000
46
40,0,14.,1101
13,4000

46

13,2000

46

13,1000

46

13,400

46

13,200

46

13,100

46

t1=156 fields

t= 6 fields
V varies

page u47

This is too much work for a sine wave, improvements will be made.

At this point development stops and so does the report.
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Legend

Appendix A- LSI-11 Operation Codes

0 for word/ 1 for byte

source field- 6 bits

destination field- 6 bits
general register- 3 bits- 0 to 7
offset- 8 bits- +127 to -128
number- 3 bits

number- 6 bits

AND
inclusive OR
exclusive OR, XOR

NOT

contents of source
contents of destination
contents of register
becomes

relative address
register definition

concatenated with

sign condition code, 1 bit
zero condition code, 1 bit
overflow condition code, 1 bit

carry condition code, 1 bit

Page U8




Mnemonic OpCode

CLR(B)
COM(B)
INC(B)
DEC(B)
NEG(B)

TST(B)

ROR(B)
ROL(B)
ASR(B)
ASL(3)

SWAB

ADC(B)
SBC(B)

SXT

MFPS

MTPS

MOV(B)
CMP(B)
ADD

SUB

BO50DD
BO51DD
B052DD
BO53DD
B@S4DD

BO57DD

B0O60DD
B061DD
B062DD
BO63DD

0003DD

BO55DD
B0O56DD

0067DD

1067DD

1064SS

B1SSDD
B2SSDD
06SSDD

16SSDD
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Instruction
clear
complement
increment
decrement
negate

test

rotate right
rotate left
shift right
shift left

swap bytes

add carry

subtract carry

sign extend

move byte from PS

move byte to PS

move

compare

add

subtract

d<-0

dé-asd
d€ d+1
d¢d-1
d¢ -4

sets status bits

Sc,d
C,d&
a-2

2%d

d+C

0 or -1

de&PS

PS&d

de-S
s-d, sets status bits
d€s+d

d&d-s




Mnemonic OpCode

BIT(B)
BIC(B)
BIS(B)

XOR

MUL
DIV
ASH

ASHC

FADD
FSUB
FMUL

FDIV

BR

BNE
BEQ
BPL
BMI
BVC
BVS
BCC

BCS

B3SSDD

B4SSDD

B5SSDD

074RDD

070RSS

071RSS

072RSS

073RSS

07500R

07501R

07502R

07503R

000400

001000

001400

100000

100400

102000

102400

103000

103400
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Appendix A- LSI-11 Operation Codes

Instruction
bit test
bit clear
bit set

XOR

multiply
divide
arithmetic shift

shift combined

floating add
floating subtract
floating multiply

floating divide

branch unconditional

branch if # 0, 2=

branch if = 0, Z=

branch if plus, H= 0

branch if minus, N= 1

sAd, sets status bits
dé (vsAd

d¢ svd

d&ryd

branch if overflow clear, V= 0

branch if overflow set, V=1

branch if carry clear, C= 0

branch if carry set, C= 1




Mnemonic OpCode

BGE

BLT

BLE

BHI

BLOS

BHIS

BLO

JMP

JSR

RTS

MARK

SOB

EMT

TRAP

BPT

I0T

RTI

RTT

002000
002400
003000

003400

101000
101400
103000

103400

0001DD
OO4RDD
00020R
O0BUNN

O77RNN

104 ik
10y ik
000003
000004
000002

000006

Appendix A- LSI-11 Operation Codes

Instruction

branch if >0, N§ V= 0
branch if< 0, N¥V= 1
branch if >0, ZV (N¢V)= 0

branch if<0, ZV(n¥V)= 1

branch if higher, CVZ= 0
branch if lower or same, CV2Z=1
branch if higher or same, C= 0

branch if lower, 02 1

Jump PG&-d
jump subroutine

return from subroutine

mark

subtract 1 & branch if # 0

emulator trap

trap

breakpoint trap
input/output trap
return from interrupt

return from interrupt, inhibit trap
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Appendix A- LSI-11 Operation Codes

Mnemonic OpCode Instruction
HALT 000000 halt
WAIT 000001 wait for interrupt

RESET 000005 reset bus

NOP 000240 no operation

CLC 000241 clear C €0
CLV 000242 clear V V&0
CLZ 000244 clear Z Z<0
CLN 000250 clear N N&-0
Cee 000257 clear all

SEC 000261 set C Ce4
SEV 000262 set V V&1
SEZ 000264 set Z Z4&1
SEN 000270 set N N&-1

scC 000277 set all
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NEA Development Program

Summagz

As obvious the program fails to satisfy the original design criteria.
The program is not interactive. It is not concerned with graphic design
of composition. It cannot reprogram itself in response to external stimula.
However it's not a total loss - the basic groundwork is complete. The
elements of the language outlined in Appendices A & B are still beyond the
uniniated. But, from these elements a higher level language will be created.
This new language will facilitate the dialogue between the artist and the
program allowing him to create the images and sequences of images in a
language he understands - a graphic design language.

The present program runs in batch mode. That is, the data must be
prepared before the program is run. Then the main program and the data
are linked, loaded, and finally processed. If the results are not quite
as expected (the norm rather than the exception) then the whole process
must be repeated - hardly instant gratification.

Again, this mode of operation is only temporary: real time interaction
will be added by expanding the interpreter routine to include the ability
to listen and talk back.

If the program listens and talks then it can learn. Combining the
random number generator with a simple algorithms for analyzing images
we can endow the program with a personality (or several personalities).

But what is the language spoken by the artist and the program? That's

a question for continuing research.
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NEA Development Program

Proposed program development includes -
1. Adding a terminal input and output routine to the interpreter
2. Adding macro commands invoking command word sequences.
3. Adding a data buffer to output device cross-reference table.
4, Adding editing commands to modify data buffer contents in real time.
5. Adding condition branch commands.
6. Designing a higher level language based on the elements and attributes
of graphic design.
7. Expanding the manual of programming techniques.
8. Creating a personality for the program - anthropomorphization of the
program,
And finally I will attempt to keep up with the break-neck speed of

our hardware development,
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A COMPUTER-BASED VIDEO SYNTHESIZER:
PART II: SOFTWARE

Walter Wright

First, I'm not a physicist. And second, I'm going to try
and get at software from a little different angle than the ordinary.
So the title of this little section is supposed tc be "Software for
a Computer-Based Video Synthesizer." "Synthesizer" implies for me
a collection of programmable to modules for processing and/or
creating images, and of course sound. "Video synthesizer" in parti-
cular is that which then creates images. "Computer-based" implies
that a computer programs these modules which together comprise the
synthesizer. And "Software" means that somebody has to program the
computer. So, beginning at the end of the process, I'd like to deal
first with the image. The image is essentially the two-dimensional
surface of the screen. 1It's also a wave form, containing both
spatial and temporal information. In fact, it's interesting to note
that a proportion of this wave form is not seen, and is not really
part of the image at all. And in most systems it's stripped away
and we forget about sync until the very end as a final parting
gesture to the newly processed image sync gets pasted back on. There
may be some possibilities for sync processing. I know that Woody has
drift modules and Bill Etra has a horizontal centering-or-other con-
trol on the Rutt/Etra. So you can think about that. Returning to -
the image and the TV screen, again the image is a surface, a light-
emitting surface. It's of rather low resolution approximately five
hundred and twenty-five horizontal lines per frame and half of that
per field. It resurrects itself every sixtieth of a second, that is
for a field. And it's retrievable, therefore, we can record it, or
we can create seeming movement. And I think it's important to re-
member that the image doesn't move anywhere. The tape moves. In-
stead the image is replaced over and over again. I think that's
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interesting to remember. We had a lot of discussion about simu-
lated motion, but here are other possibilities for the creation
of sequences of images; for example, fast sequential switching.

andrelated areas that we've been getting into recently at the
Experimental Television Center. Of course we can create the
illusion of fluid motion, but as I said we can do a lot of other
things as well. Different images related or unrelated by compo-
sition, impact, or whatever can be inter-leaved, as I described
field by field, frame by frame, and multiples thereof. I
mention this in passing because I feel in discussing software we
must avoid the trap of imitating, borrowing, and misapplying
techniques, ‘theories and other trappings of related technologies.
We must really find out what makes TV tick, you know. Just be
aware of this dinosaur syndrome. I think there are useful simi-
larities and comparisons that exist between TV and photography,
TV and film, TV and electronic music, and amongst the whole
gaggle of electronic arts in general.

I have recently discovered, or re-discovered, that the
video image is subject to some of the basic rules of composition.
Kind of a revelation, and not too obvious in broadcast TV. Anyway,
the elements or the attributes of design, or whatever you want to
call them, seem to apply. Think about an image in terms of a point
or grain, having to do with the resolution and the surface mater-
ial of the screen. The Trinitron monitor over there is a matrix of
over 100,000 red, green, and blue dots. Think about the images
made up of lines, like a raster line. Or on a manipulation system,
is a set of lines that can form angles to each other. Think of an
image as texture combining the above, texture derived from noise,
or texture derived from a high speed oscillator module. Anyway,
other design elements like area are defined by lines or by texture.
Elemements such as value, luminance contrast, saturation, hue-all
of these define color. Or, as some of the participants mentioned,
RGB components plus luminance. These are some of the design ele-

ments of the image.
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The field, which is one-sixtieth of a second long, con-
tains two hundred and sixty-two and a half lines. Now that's kind
of like the basic image unit, although Don uses the frame. You can,
of course, group succes<ions of fields to form larger units. Like
the frame or whatever. And of course there are those things that
result from the grouping together of points and lines and textures
and fields. :

Now let's look at groups of elements together in a field
or frame. You can talk about things like density and balance and

. imbalance and symmetry and asymmetry, focal points, proportion,

scale, depth, object/field relationships, pair and form and others

that escame me.

I'm sure they're all there. And finally those consider-
ations resulting from the succession of the fields or frames. Some-
thing that LaurieSpiegal was talking about--harmony, rhythm, counter-
point, translation, rotation, ex-and implosion, warping, bending,
convolution, all of these apply to the succession of frames. This
may seem like a peculiar way to approach the design of software, but
I'll just let that hang for a minute and go on to micro-computers,
or computers in general.

I thirnk we are kind of very unfair to our computers ~
maintaining dossiers ‘on subversives. Amongst other things, this
approach lacks, I think, imagination and creativity. It raises a
difficult problem at this point in my writing, does a computer
imagine or create? And, can it be used imaginatively and creat-
ively? That's probably a better way to put it, and gets me out of
the problem. Most of the software we've heard described kind of
runs on high school mathematics or at some undergraduate level.

And I don't think that a graduate degree, from my experience, has
anything to do with imagination or creativity. And therefore I've
looked elsewhere for my inspiration in programming. Several parti-
cipants have mentioned that learning requires feedback. As in any
relationship, the computer and the synthesizer must interact. They
have to be able to talk to each other, and so cn. Granted the
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computer may never learn to be imaginative or creative, but there's
one attribute of the artist that it can share, and that's unpre-
dictability. Or more exactly, predictable unbredictability. Joel
Chadake mentioned the use of a random number generator to create

a situation in which the artist and the computer can improvise to-
gether. 1In the simplest case software is created which causes the
computer to reprogram the synthesizer at predetermined intervals.
In this case the computer responds to the clock, and away it goes.
A good synthesizer I think should contain modules not only to
synthesize or put together an image, but also modules to analyze
and to break apart an image. Modules that provide information to
the computer concerning, believe it or not, things like texture,
value, scale, balance, symmetry, rhythm, etc. And this can be done
in several ways. First by monitoring the programming of the
synthesizer, that is the patching together of the modules or the
route that's taken by the image through the synthesizer. And
second by analyzing the image that's actually output by the
synthesizer. Remember feedback? Now we can make the computer re-
spond in a less willy-nilly manner than in the random generation
scheme. 1In fact, the software might even be able to allow the
artist to identify for the computer what is a good and what is a
bad image. That's kind of overstating it; let's say what is a

more desirable and what is a less desirable image or sequence of
images. Or another way, what is a more probable or a less probable
image or sequence of images? Finally, the computer could probably
be programmed to reprogram itself. Think about that.

A word should be said about micro-processors. One of
their big features is that they have reduced the cost ratio between
the CPU, which is that central control unit, and the total system
from about one-to-ten to about one-to-one hundred. So a twenty
dollar chit means a two thousand dollar computer. Another ratio
that I think is important to remember is that there's much more
effort that goes into software development than hardware development.

Something like ten-to one.
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Anyway, since I got back to software somehow. I think
the software must be concerned with composition, first of all.
First must be the elements and the attributes of design. Second,
the software must be capable of both analyzing and synthesizing
images. Third, the software should have a mind of its own. It
should be capable of reprogramming the synthesizer and re-
programming itself. Fourth, it must interact in real time with
the artist. And fifth, it has to cost almost nothing.

I got this brochure from Carl Geiger and Rod Fountain
of Synapse and it's kind of interesting because Rod has been work-
ing on a program for the Altair which has a lot of features in it--
and is moving in the direction that I've described. The program is
called HARPO. It allows one to generate control voltages that can
run asynchronously with each other. It allows one to define these
as a score and allows one to interact with your score in real time.

Now, here's a diagram (figure one) which describes a
program that we have implemented for Woody Vasulka. The columns
sticking up vertically are stacks of data which define what's
going to happen in the way of generating control voltage, or they
supply digital information to a synthesizer module. So it could be
generating a control voltage, reading the intensity value at a
point on the raster, whatever. For each device or each module in
the system there's a unique data stack. Now below the data stacks
you see a set of blocks that contain information regarding the
arrow that's riding up and down the stack (which is a pointer
telling me where I'm at in my data at the moment), the address of
the data, the device I'm using, and a timing counter. The stacks
can just operate in parallel under their own timing. The timing
counter decides what the duration of a particular control function
is going to be, and the counter just counts off frames and allows
it to go on for that duration or length of time. The arrow or
pointer points to a control word which will cause a branch to a
sub-routine in turn will generate the information for mocdule in
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‘the synthesizer. The large arrow that goes around like a belt
comes from the control module, which keeps track of all the house-
keeping. And it is synchronized to the vertical drive pulse, in
Woody's system it's a thirtieth of a second. It's not the Zield
rate which is the smallest unit; its that or the frame rate. Every
one thirtieth you get an interrupt and around it goes. The pro-
gram goes through the little boxes at the bottom, decides if some-
thing current is supposed to be happening, and does it. If it
needs data it locates the pointer, fishes the data out of the data
stack and proceeds on its way. So the computer, then, can execute
all of these things kind of asynchronously, in parallel. Here's a
bubble diagram (figure two), let's deal with the little circles
first. The control program is sitting in there in the middle. The
other little circles also represent programs. I thought I'd just
show this because it's not a hierarchical structure it's a network.
Anyone of those programs can call anyone of the programs. And you
can move on any path in within the network. So you can have circles
that take care of synthesizer modules. You can have things that
just operate internally, inside the computer, such as Library rou-
tines, transforming numbers, and of course the input and output
routines. I wanted to show you a network and that will relate to
the final diagram (figure three) here. Let's assume that one mod-
ule does one transformation. If we lay out modules on two sides

of the graph we have a Pinboard. Connect one to two, two to three,
three to four by plécing a pin at the appropriate cells in the
matrix. Or what we can do is, we can define the way our system is
going to behave by not indicating a definite yes or no, but by
indicating a probability. In other words, if we have just executed
or if we have just passed the image through module one, what is the
probability that it's going to go to module two, three, four or
five? We can say that it's very unlikely that it's going to go to
module five, but it's highly likely that it's going to module two.
After it's been to two we can say that it's very unlikely that it's
going to go anywhere else but seven. And we can code this inform-
ation on the matrix, and this will cause the program to do whatever
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it has to do in terms of patching the system. This is what I meant
by predictable unpredictability. We've gained a kind of control
over our system, which is not totally predictable but can identify
for us certain groups of images that will be more likely than
others. So we'll go through a sequence of images which will be re-
lated. And you may not be able to predict exactly what each image
will look like, but you will be able to predict certain properties
of them. Say that certain of the modules always generated symetric
images. I could, by making sure that those modules got connected
together guarantee symmetry was maintained over a certain period of
time. Now you can see that it's possible to fill in both sides of
the matrix and talk about moving from module two to module one and
from module seven back to module two. That doesn't have to be the
same probability going one way or other in the system. Here's
where the artist interacts most effectively with the system by con-
trolling these probabilities in real time. In a longer composition
what he would do is identify the probability of certain kinds of
images at a certain point and change that probability over time to
switch to another group of images as being more probable. Then you
can apply this not only to the patching network of a synthesizer,
but we could apply this to various other elements in the compos-
ition of the image, the performance of a particular module, the
frequency range that an oscillator is going to go through, what
frequency it's likely to start off at. You could use this approach
in many ways. And it's an approach, again, which uses a small a-
mount of data to generate a large effect over a long period of time.
So it's very useful.

I want to mention a couple of other possibilities. An-
other technique I think could be used in programming is the idea of
the conditional branches which are inherent in assembly languages.
That is the "if" condition. If condition 'one' (density, balance,
grey value, whatever you want to measure) is true then we're going
to create condition 'two'. We're going to change a probability. We

are going to alter a control parameter. We're going to take a
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coffee break, whatever. Other types of conditional branches then
that we can build from those are like not just the "if" "then",

we can do the "if" "then" "else". And in most languages it's
possible to nest these, although I know some people don't like
loops. And you can do things like "if then", "ifthen", "if-then",
"else", "else", "else". Anyway, I think that's all I have to say
about software. Any questions?

QUESTION PERIOD

QUESTICN: You've got elements in
your probability matrix, but what do they represent? Do they re-
present keys or color values or . . .?

WRIGHT: Well, in that case I

was just considering PATCHING. If you had like a switching matrix
controlled point by point, you could patch one module into another
and route the signal. So I was just saying, is it likely that

after its having passed through a keyer, would it be likely in Dan
Sandin's system to go to an adder/multiplier, and the answer is yes.
The signal from the keyer would be likely to go there, that would be
a good thing. But you may not want that at a certain point in the
composition. You may not want the hard edge. You might want to do
something else. So you would turn off the keyer by lowering its
probability of being patched in.

QUESTION: But you're talking about
manually controlling these effects, so it makes sense to switch them

in this way. < : '

WRIGHT: I was gust assuming this
swltcher.
QUESTION: 0.K. But you're talking

about stuff--that this is the kind of design of what you're doing.
Or is this--is this what is manifesting in these tapes you're showing?

WRIGHT: No, it doesn't have any-
thing to do with the tapes I'm showing. The tapes don't have any
computer in them at all.
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QUESTION: : Oh, 0.K., so the tapes

are feedback? 1In general?

WRIGHT: No, the tapes are back-
ground. It's kind of where I've been and an idea of where I want
to go, you know. with using those kinds of systems. This is still
the Jones colorizer.

QUESTION: Uh huh. O0.K. Thank you.
WRIGHT:. Tom.
TOM: It would seem to me a

third graphic on the opaque project (figure three) that there's

some correlation between what you're talking about and what Don spoke
about earlier. And perhaps this is the product of your collabor-
ation. Particularly, it would seem like you're anticipating the kind
of software that would be used in a system such as the type that he
outlined. 1Is that what--are you anticipating a way of programming
this pattern generator that he's prototyping now?

WRIGHT: I think it's kind of a
little bit even more than that. We're trying to approach the de-
sign of the hardware and software from the outside of the circle

and work inwards. And so what I'm trying to do is develop some
environment in which I'm going to design the software. I'm trying
to get my head into a space where I can make it flexible enough that
it's going to be able to deal not only with that but could be used
for a frame buffer. It could be used for, you know, position to
voltage. It could be used fcr other modules. You see, Don McArthur
has tried to maintain this in the design of his hardware by providing
that element buss, which you can plug anything into. So I've tried
to make the software in such a way that it leaves the general pro-
cesses defined but leaves open the number of data stacks used or ‘the
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actual kinds of device that are used. I can't predict exactly what's

going to turn up.

TOM DEWITT: Well, I'm really con-
fused now. You're talking about the element buss which is as I
understood it part of the video portion of the hardware architecture.
But this programming construct would be implemented in the computer

side.
WRIGHT: Yes.
TOM: And judging from--I'm

not sure that I fully compreherd his (Don McArthur's) presentation--
it would appear that matrix switching that you're postulating would
be very useful in the context of being able to generate a wide vari-

ety of patterns from these multiplexers that he . . .
WRIGHT : Right.

TOM: . « « that he uses. And
so, you know, these--you would be able to quickly review for the
observer all the different possibilities that he says that this
system could produce. You could program an event that would show

us these patterns, and it would just sort of evolve. We could just
sit back and watch it. Is that something that will happen? As you
move from outside the circle toward the center? Where it's real.

WRIGHT: I think so. I think
what you're describing is kind of an ideal situation. And maybe the
final remark here is that the area of concern in designing software
has got to be the language between the artist and the computer. And
I think there are a number of things that we have to watch out for
here. First of all, this language must relate directly to the
creation of images and generate the data therefrom. The language
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must be able to direct the flow or the succession of fields, it must
be able to generate individual fields, it must be able to identify
the quality of an image or a group of images, it must be able to
Create new images, and must be able to create a score. That's not
exactly what you said. But what you said is something like being
able to use the system to look at a broad range of images and then
perform a selection process to arrive at some kind of conclusions
about what images you like and don't like. Is that right, Tom?
You're saying that the system could be used that way.

TOM: : Well, I think what Don
McArthur is going to build is something we'll understand once we see

it running.

WRIGHT: You can see part of it

running now.

TOM: Are the Vasulkas using

that kind of control system:

WRIGHT: Um hum. (Yes)

TOM; Is this under computer
now?

WRIGHT: Um hum (Yes)

TOM: Yeah. So we see a lot

of variety and I'm sure that there are moments when we want a
reference back, and then juxtapose those with other moments that at
this point are occurring at a more random programming than an artist
might desire for some particular effects. So then we can go back in-
to that particular point in time which might be kept track of on a
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clock that we're watching and start juxtaposing certain patterns
that the thing makes with each other based on some other idea that's
in the head when we come in. Yeah, yeah-yeah, that's it.

WRIGHT: 0.K., George. (Chaik in)

GEORGE: : Yeah. I was struck by
the correlation between your probabilistic state transition table
and I'm not sure whether you're aware of it, but you should be.
That's why I'm bringing it up. You should be made aware of it if
you're not. Between that and at the very foundation of verbal
language the connection between phonemes and morphemes. (t's been--
it was demonstrated by Selig Harris that morphemes, the basic
meaning element of language, are related to phonemes, the basic
sound elements of language, by a stochastic Markoff-like process,
which is inherent in that table. It seems very exciting that you
are building a machine that at least has a capability, the possi-
bility, of beginning to play with the formation of visual morphemes,

~ because of that correlation.

WRIGHT: That's the general idea.
I got the idea from architectural design--locating rooms by a
probability matrix. I think those matrixes are used in a number of
areas and fields in programming. It's not--I presume they would
occur in a lot of places, like your spiral. Any other queétions?

GEORGE : (Yes)

QUESTION: I just want to make sure

I understand...the way I gather it from what you've said is that you
are using a digital machine, a computer of some sort, which is on a
frame by frame basis creating patches between some number of modules,
and is also at least in some instances, ‘also providing control data,
which are telling those modules hoﬁ bright, how much color to cut out,
etc. Is that the Dasic . . . :
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WRIGHT: : Yeah, that was the
example that I used.

QUESTION: 0.K. The question is,
how many modules are you really talking about? And in terms of
this state diagram that was drawn, was projected before. What
percentage or what, you know, fraction of total conceivable image
space are we really talking about with a system like this. 1In
other words, how versatile is it in terms of approaching the tota-
lity of all conceivable images that . . .

WRIGHT: : I don't think we have
the number of images equal to the, you know, number of atoms in

the universe or whatever. There, I don't really want to answer
that. I can simply point out how to arrive at that for one's
particular situation. And it's usually a cost or an economic fact-
or. You can only afford to build so many modules, and as Don .
McArthur says, he has some ideas how to choose effectively the right
ones. And in terms of the program you have only so much memory
space, and if you are using buffers you have so much mass memory
space. ©So you can only do, you know, have a hundred of those data
stacks or ten of those data stacks or whatever fits inside the box
that you've got. That's I think the best answer that I could give.
What I try to do is propose the design in such a way that it is up-
wardly expandable. '

QUESTION: Well, do you get to a
point in trying to upwardly expand the system where the number of
modules that have to be built becomes excessive to the point where
the approach of using analog processing modules begins to be very

cost ineffective:

WRIGHT: Yeah, probably.
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CHUCK (KENNEDY) : (This question not quite
audible about polling modules to find out if they're in use).

WRIGHT: Sure, the program I've
got with Woody, I think I just set this up in the very beginning by
entering which modules are in use and which are not. And then the

polling order is simply, you know, from top to bottom. Yeah, it's
quite conceivable to down and up modules interactively by just in-

cluding a cross reference table.

QUESTION: (Again, inaudible--con-

cerning difference between hardware and software).

WRIGHT: Yeah, there's this kind
of grey area between software and hardware, you know, like, do you
have a hardware modem or do you have a software modem. You know,
things like that. The circuits that disappear into thin air. What
Don McArthur was referring to is the fact that these circuits pop
up in software now, you know. And if you've had to pay five to ten
dollars for a micro-processor chip you may even see more of this

happen.

LAURIE SPIEGAL: I had just thought of
slightly ciarifying something Tom DeWitt was getting at in his
question. And that is, that is a basic orientation for this system.
It sounded like it, when you were talking about it, that it's
essentially oriented toward the production of a continuous creative
process with fluctuating probabilities, etc. And Tom is asking a-
bout its potential as a system for a specific designed entity with
fixed, predetermined relationships among things. And that these
are in fact two different projects of composition which may be
compatible within one system in various ways, and there may be many
grey areas in between but that there may be fundamental logical
differences between the system which is designed to have continuous
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generation processes, and one which is designed to produce specific
editable and selectable effects. And I was wondering how you felt
about--if you understand that kind of polarity in terms of composi-

tional method that Tom was getting at.

WRIGHT: I guess I didn't under-

stand Tom's question too well. I think the first diagram which

just shows those stacks of data, you know, parallel, that's kind of
oriented towards, I forget whether it's the former or the latter,
approach that you talked about. That's in a sense scorable, script-
able, previsualizable. In a sense those data stacks can be built up
in absolute form. What is said to happen on frame one hundred and
ninety-three will in fact happen to exactly that module at exactly,
you know, that time. And then the second one that I put in was a
chance to expand the total environment of the program. O0.K.? So
the interaction that the artist can have, I should think, would al-

low him to utilize both modes of operation.
LAURIE: : Yeah.

WRIGHT: I think what Tom said

is something even more interesting in the sense that you could put
the machine into a mode where it will generate just a whole universe
of images, totally unexpected, and you will just sit there and say,
reject, thumbs-up, thumbs-down, thumbs-up. And it'll go back then
and play from that set and start--and then you can analyze, if you
have the right modules, why that set, what are the characteristics
of that set and proceed from there. That's the kinds of interaction

I would like to see in a program.

LAURIE: And then perhaps even a
program above that could create counterpoint among the things you'd

selected, and etc. Yeah. O0.K.

QUESTION: (Inaudible--concerning

software development).
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WRIGHT: I don't know. I've--I
can't really say--I was going to describe a few simple algorithms
that I've used in graphic programming. You know, Cartesian coord-
inate type plotter programming, and generating either line images
or point images in a frame. And then being able to perform anal-
ysis of that image. For instance, it's very easy to, say, propose
an axis of symmetry and then test for it if you've got a matrix of
points in Cartesian coordinates, you know? And then you can vary
that axis or move it and test for symmetry again and see if it
happens. If it doesn't you can force it. Or you can create
asymmetry by picking up the points on the matrix or lines and
transposing them and overlapping them, and proceeding from there
to generate new images. I think that--I didn't want to get toc
specific in those kinds of algorithms. We don' have them yet. And
but I've worked with them in related fields, and I think there's
probably a whole contribution of algorithms that could come. I
think--see, what I was really saying is that a lot of programmers
just forget about the fact that they are in the end creating an
image. Then they forget about the basic rules of composition and
I think that's where the language should start. That's what I
really meant to say. Yeah.

QUESTION: O0.K. You have started
out with a design approach here in which the video information
that's coming off the tube is, has a fixed rate. A thirtieth of a
second per frame. And you then figured out things like, well, how
fast can a human put out information and therefore how much versa-
tility can we cope with before it becomes impossible for the human
to put out information rapidly enough to be able to twiddle more
and more parameters. I just would like to ask, why that trade-off?
Why the whole idea of going necessarily ‘n real time and limiting
the number of things, the number of aspects of an image which the
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artist can control because of his limited motor and perhaps even
cognitive thought processes? In other words, is that clear?

WRIGHT: : No.

QUESTION: O0.K. Why make the
trade-off for real time in which the limiting factors then becomes
the amount of information per unit time that the artist can put

into the system to control the images, to control the way the thing
is going. As opposed to working in less than real time with

greater versatility and more time for the artist to put in more con-
trol information to more subtly modulate the images on a frame by
frame basis.

WRIGHT:. It (the software) works
on both modes.






